Unclassified Mycobacterial Strains Susceptible to Dapsone Isolated from the Environment in Central Africa

TO THE EDITOR:

We enjoyed the paper of Seydel, Richter, and Wempe (⁴) on the "Mechanism of action of the folate blocker diaminodiphenylsulfone (dapsone, DDS) studied in *E. coli* cell-free enzyme extracts in comparison to sulfonamides."

We note that the authors mention that M. lufu, a strain with high sensitivity for DDS, is presently under study in their laboratory. In view of this, we would like to mention that we have isolated, from the environment in Zaïre, a number of mycobacterial strains sensitive to DDS (3). The minimal inhibitory concentration (MIC) of dapsone on Löwenstein-Jensen medium is 0.1 µg/ml for 21 strains and 0.03 μ g/ml for five strains. All these strains are slowly growing organisms and do not grow or grow very poorly at 37°C. They are different from the actually recognized mycobacterial species and belong to three new groups. One of these groups was provisionally designated by us as "M. lufu," and we gave two of these "M. lufu" strains to Prof. Dr. Seydel. Therefore, we want first to draw your attention to the fact that the species description of "M. lufu" has not yet been published and is thus not official. Second, among the "in vitro" cultivable mycobacterial species, none was found to be as sensitive to DDS as our unclassified mycobacteria isolated from the environment in Zaïre. The most sensitive species (M. kansasii, M. gastri, and M. ulcerans) have a MIC varying from 0.3 to 0.1 μ g/ml, approximately ten times the value known for wild

strains of *M. leprae* (¹). Five of our unclassified mycobacteria, however, have a MIC value (0.03 μ g/ml) very close to that of *M. leprae* (0.02 μ g/ml), as determined in mice and rats (^{2,5}). Studies of those strains will certainly help to elucidate the mechanism of action of dapsone.

Additional studies on these dapsone sensitive mycobacteria are in progress.

-F. Portaels, Ph.D.

Chef de Travaux Laboratory of Mycobacteriology Institute for Tropical Medicine Nationalestraat 155 B-2000 Antwerpen Belgium

REFERENCES

- PATTYN, S. R. and VAN ERMENGEM, J. DDS sensitivity of mycobacteria. Antagonistic effect of PABA for *M. ulcerans* and *M. kansasii*. Int. J. Lepr. 36 (1968) 427–431.
- PETERS, J. H., GORDON, G. R., MURRAY, J. F., FIELDSTEEL, A. H. and LEVY, L. Minimal inhibitory concentration of dapsone for *Mycobacterium leprae* in rats. Antimicrob. Ag. Chemother. 8 (1975) 551–557.
- 3. PORTAELS, F. Etude d'Actinomycetales isolées de l'homme et de son environnement en Afrique Centrale. Doctoral thesis, University of Brussels, Belgium, 1978.
- SEYDEL, J. K., RICHTER, M. and WEMPE, E. Mechanism of action of the folate blocker diaminodiphenylsulfone (dapsone, DDS) studied in *E. coli* cell-free enzyme extracts in comparison to sulfonamides (SA). Int. J. Lepr. 48 (1980) 18–29.
- SHEPARD, C. C. Studies in mice of the action of DDS against *Mycobacterium leprae*. Int. J. Lepr. 35 (1967) 616–622.

Effect of Purification Procedures on the Viability of Mycobacterium leprae

TO THE EDITOR:

Suspensions of *Mycobacterium leprae* prepared from infected tissues are usually contaminated with host-tissue elements. When such suspensions are used for metabolic studies, spurious results might be obtained. The enzyme activities detected could be of host-tissue origin, or the contaminant substances would inhibit the bacterial enzymes. THE TABLE. Effect of purification procedures on viability and o-diphenoloxidase of Mycobacterium leprae.

Treatment	Viability: No. of bacilli harvested per foot pad ^a	<i>o</i> -Diphenol- oxidase absorbance 480 nm (×10 ⁻³)
None	2.4×10^{6}	33
NaOH	$1.9 imes 10^6$	36
Acetone-ether	$1.3 \times 10^{4 \mathrm{b}}$	37
Trypsin	$1.6 imes 10^6$	72

^a Mean value per foot pad determined from two pools of five mouse foot pads each.

^b One pool of five mouse foot pads had no bacilli in 90 microscopic fields; the other pool had 15 bacilli in 90 fields (2.6×10^{4} /foot pad).

We have reported earlier (⁴) that *M. lep*rae separated from infected armadillo tissues do not lose their *o*-diphenoloxidase activity on treatment with dilute alkali, proteolytic enzymes, or acetone and ether. We have also shown (²) that alkali-treatment completely inactivates a host-tissue enzyme adsorbed on the bacterial surface. It was not known whether the purification procedures would impair the viability of the *M. leprae* suspensions.

Suspensions of *M. leprae* were prepared from the spleen tissue of experimentally infected armadillos, as described before (3). The bacilli were treated with the different reagents to remove adsorbed host-tissue elements, as reported earlier (4). Viability of the bacterial preparations was tested by inoculating them into the left hind foot pads of Swiss NIH mice (female). The number of bacilli inoculated in each mouse was 1 \times 10⁴. The preparations were inoculated into 20 mice each. Six months later, the bacilli in the mouse foot pads were enumerated by the method of Hanks, et al. (1). o-Diphenoloxidase of the treated suspensions was determined as described before (4).

The results are given in the Table. *M. lep-rae* separated from lepromatous tissue re-

tained their viability. Alkali and trypsin did not alter the viability of the organism; however, the bacilli treated with acetone and ether failed to multiply in the mouse foot pad. None of the reagents diminished the o-diphenoloxidase of M. leprae; in fact, trypsin-treatment enhanced the enzyme activity, confirming our previous report (4). It is likely that acetone-ether treatment disrupts the bacterial cell membrane, resulting in the loss of soluble cytoplasmic contents. This might explain the failure of the organism to grow in the mouse foot pad. o-Diphenoloxidase is a particulate enzyme (⁵) firmly attached to the bacterial membranes; as such, the activity is not removed by the acetone-ether treatment. It is evident that *M. leprae* suspensions can be purified with NaOH and trypsin without impairing the viability of the bacilli.

- —K. Prabhakaran, Ph.D.
- -Eugene B. Harris, B.S.

-Waldemar F. Kirchheimer, M.D., Ph.D.

Laboratory Research Branch U.S. Public Health Service Hospital Carville, Louisiana 70721, U.S.A.

REFERENCES

- HANKS, J. H., CHATTERJEE, B. R. and LECHAT, M. F. A guide to the counting of mycobacteria in clinical and experimental material. Int. J. Lepr. 32 (1964) 156-167.
- 2. PRABHAKARAN, K., HARRIS, E. B. and KIRCHHEI-MER, W. F. Absence of β -glucuronidase in *Mycobacterium leprae* and elevation of the enzyme in infected tissues. Lepr. Rev. **49** (1978) 203–213.
- PRABHAKARAN, K., HARRIS, E. B. and KIRCHHEI-MER, W. F. Binding of ¹⁴C-labeled DOPA by *My-cobacterium leprae in vitro*. Int. J. Lepr. 44 (1976) 58-64.
- PRABHAKARAN, K., HARRIS, E. B. and KIRCHHEI-MER, W. F. Metabolic inhibitors of host-tissue origin in *Mycobacterium leprae*. Lepr. India 51 (1979) 348-357.
- PRABHAKARAN, K., HARRIS, E. B. and KIRCHHEI-MER, W. F. Particulate nature of *o*-Diphenoloxidase in *Mycobacterium leprae* and assay of the enzyme by the radioisotope technique. Microbios 8 (1973) 151–157.